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Abstract

We investigate in this paper the application of Schwarz-based algorithms to com-

pressible flows. First, we study the combination of these methods with defect-correction

procedures. We then study the effect on the Schwarz-based methods of replacing the

explicit treatment of the boundary conditions by an implicit one. In the last part of

this paper we study the combination of these methods with Newton-Krylov matrix-

free methods. Numerical experiments that show the performance of our approaches

are then presented.
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1 Introduction

To compute steady compressible flows one often uses an implicit discretization ap-

proach, which leads to a large sparse linear system that must be solved at each time

step. In the derivation of this system one often uses a defect-correction procedure, in

which the left-hand side of the system is discretized with a lower order approxima-

tion than that used for the right-hand side. This is due to storage considerations and

computational complexity, and also to the fact that the resulting lower order matrix

is better conditioned than the higher order matrix. The resulting schemes are only

moderately implicit. In the case of structured, body-fitted grids, the linear system can

easily be solved using approximate factorization (AF), which is among the most widely

used methods for such grids. However, for unstructured grids, such techniques are no

longer valid, and the system is solved using direct or iterative techniques. Because

of the prohibitive computational costs and large memory requirements for the solu-

tion of compressible flows, iterative methods are preferred. In these defect-correction

methods, which are implemented in most CFD computer codes, the mismatch in the

right- and left-hand side operators, together with explicit treatment of the boundary

conditions, lead to a severely limited CFL number, which results in a slow convergence

to steady state aerodynamic solutions. Many authors have tried to replace explicit

boundary conditions with implicit ones (see for instance [25], [21], and [13]). Although

they clearly demonstrate that high CFL numbers are possible, the reduction in CPU

time is not clear cut.

The investigation of defect-correction procedures based on Krylov methods, to-

gether with implicit treatment of the boundary conditions has been done by the author

in [24]. In [24] the author has also studied Newton-Urylov matrix-free (see also [3],

[22], [23], and [10]) methods combined with mixed discretization in the implicitly de-

fined Jacobian Preconditioner. The preconditioner based on incomplete factorizations

studied in [24] is difficult to parallelize efficiently. The focus in this work is on the

developement of algorithms that are suitable for the parallel computing environment.

In this case, domain decomposition methods that allow the reduction of the global

solution of a given problem to the solutions of local subproblems are preferred. We

propose, therefore, to combine these methods with the preconditioned Newton-Krylov

matrix-free methods developed in [24].

One of the domain decomposition algorithms that has potential applications on

parallel computers is the additive Schwarz algorithm [8]. The other Schwarz-based

method; the multiplicative Schwarz method [8] can also be used in the parallel en-

vironment by using a multi-coloring process. The proposed algorithm is, therefore,

to combine the Newton-Krylov matrix-free methods with the Schwarz-based methods.

The combination of Newton-Krylov matrix-free with domain decomposition methods

was first introduced by the author in [22] and [23]. More precisely, the author has com-

bined the Newton-Krylov matrix-free method with the Domain Decomposition Time



Marching Algorithm that was introduced by Le Tallec and Tidriri in [11] (see also [22]

and [231).
In the next section, we describe the Euler solver. In section 3, we describe the

methodology studied in this paper. In section 4, a comprehensive study of Schwarz-

based methods combined with defect-correction procedures with explicit and implicit

boundary conditions is performed. We then study the combination of the Schwarz-

based methods with the Newton-Krylov matrix-free methods. The last section is de-

voted to some conclusions and extensions.

2 Description of the Euler solver

2.1 Governing Equations

The bidimensional Euler Equations in conservative form writes

w, + F(w)_ + a(w)_ = o, (1)

where W = (p, pzt, pv, e) T, F : (p'tt, pZt2 + p, pltV, lt(e -4-p) )T, and G = (pu, puv, pv 2 +

p,v(e+ v))r.
Above p is the density, u, v are the velocity components, e is the internal energy, p is

the pressure defined by p = (7- 1)(e- (P( u2 + v2)/2)), and finally, V is a constant with

3' "_ 1.4 for air.

After changing the variables into the curvilinear coordinate

_ = t,_ = _(_,y),, = ,(_,y),

we obtain the following set of equations

_¢_+ (P)_+ (_), = 0, (2)

where l_ and the contravariant flux vectors, F and G, are defined in terms of the

Cartesian fluxes and the Jacobian determinant of the coordinate system transforma-

tion, through

W = J-1W

= j-1 (_tW + _xF + _yG)

= J-_ (_tW + _?_F + _yG),

and



J
0(_,_,_)
o(x,v,t)

= det( 4_x_)_

From now on, the tilde in the expressions of Ii z, F, and G will be omitted.

2.2 Finite volume scheme

An implicit finite volume discretization of equation (2) can be written as

,,, - W_,j)A_A,/ + _+},j --

+(a_,_:, - _.+1 )_. = O, (3)

where the values are taken at the center of either the cell (i,j) or the interfaces of the

cell (i, j) and its neighbours. To compute the fluxes above, we shall use a flux splitting

approach, which is defined for F by (see [20])

F= F+ + F -,

with similar expressions for G. F + is associated with the positive eigenvalues whereas

F- is associated with the negative ones, and G +, G-are defined analogously.

Let 5W = W_ +_ - W_,_j, then the implicit split-flux discretization of (3) is given by

_W n -_- AT((_(F + + F-) n+l + (_,?(G + + G-) n+l) = 0,

where 6_ is defined by

1

6¢F = _-_[F_+I/2,j- Fi-1/2,j]

and 6, is defined similarly. This yields the following nonlinear system

(4)

f(W"+l) = 0. (5)

This nonlinear system will be solved by using the proposed approach of this paper,

which is based on a Newton-Krylov method (see next sections). Now, we shall de-

scribe the more standard defect-correction method, which is based on the following

linearization of first order in time of the nonlinear system above



[I + A_-(5_A+. + P_A-. + _B +. + 6_B--)lSW _

= +

The superscripts i and e above indicate that the implicit and explicit operators are dis-

cretized using different schemes. The dots indicate that the difference operators apply

to the product of the Jacobian matrices with 5W '_. The matrices A +, A-, B +, and B-

are defined by

OF + OF-
A + - A--

OW' OW'

OG + OG-
B + - B--

OW ' OW"

The compact form of the above equation corresponds to the following defect-correction

procedure

A W =b. (6)

The different fluxes above are computed using the Roe's approximate Riemann solver

[17]. Three limiters are employed: minmod, Superbee, and Van Leer. The Jacobians

are evaluated using first-order Roe's scheme, or the first-order flux-vector split scheme

[20], which corresponds to the true partials of the positive and negative flux vectors as

described earlier. However, in the context of defect-correction method the flux-vector

split scheme has been shown to give improved convergence rates over the Roe matrices.

Therefore, for the defect-correction approach the Jacobian matrices corresponding to

the flux-vector split scheme are used in the left-hand side. This results in an inconsistent

left and right-hand side operators.

Remark 2.1 For most CFD codes, the implicit spatial differences are only first-order

accurate. The higher-order matrix representation is difficult to obtain, even if it is

possible the resulting matrix is very large, requires a lot of storage, large operation

count in its evaluation, and may be very difficult to invert.

Following this remark, the implicit spatial differences (the left-hand side) in equa-

tion (6) are approximated, only, through a first-order accurate scheme. The ex-

plicit spatial differences (right-hand side) in equation (6) are approximated using the

higher-order formulations of Roe's scheme, that are based on the work of Osher and

Chakravarthy [16].

2.3 Explicit boundary conditions

The boundary conditions are derived using the locally one-dimensional characteristic

variable boundary conditions, which yields (for the derivations see for example [15]):



2.3.1 Farfield-Subsonic Inflow

Pb = (1/2)P,_ + Pi + sign(A_)poco[k:_(u_ - ui) + _:_(v_, - v,)]

pb = po + [(Pb- Po)lc2o]

ub = uo+ _[(Po- Pb)/(poco)]sign(_)
vb = vo+ _[(po- Pb)/(poCo)]sign(_)

Above, the point a is outside the computational domain, point b is on the compu-

tational boundary, and i is inside the computational domain.

2.3.2 Farfield-Subsonic Outflow

2.3.3

Pb = P_

p_ = po+ [(P_- Po)/_o]
,_ = uo+ _[(Po- Pb)/(poco)]sign(:_)
vb = v_, +/%[(P_ - Pb)/(poCo)]sign(A_)

Impermeable Surface

Pb = P, _ poCo

ub = u, - kx(k_u_ + _v_)

Where the point r is the center of the first cell from the boundary and the minus sign

in equation (2) is used if r is in the positive k direction from the boundary, and the

plus sign is used if r is in the negative direction from the boundary.

2.3.4 Farfield-Supersonic Inflow

In this case all eigenvalues have the same sign.

variables are specified.

Since we have an in inflow case all

2.3.5 Farfield-Supersonic Outflow

In this case also, all eigenvalues have the same sign. But now we have an outflow

case, therefore, all variables must be obtained from the solution in the computational

domain. All variables are extrapolated from inside the computational domain to the

boundary.



2.4 Implicit boundary conditions

In the implicit form the above boundary conditions can be written in the form of

operators formulated as functions of the conservation vector W:

h(w) =0

and are implemented implicitly through:

(7)

oh _w = -fb(w).
OW

Using these implicit boundary conditions the author showed in [24], that starting from

a small initial CFL number (10), CFL may be adaptively advanced according to:

CFL_+1= CFL_ • IIf(W)lP-1
II/(w)ll" '

where the uperscripts denote the iteration in time. This is the key to the successful

implementation of the preconditioned Newton-Krylov matrix-free method studied in

[24], and which we combine here with the Schwarz-based methods.

3 Description of the methodology

Newton-Krylov methods first proposed by Brown and Sa_d [3], have been investigated

for compressible Euler and Navier-Stokes equations using unstructured grids in [22],

[23], and [10], and for structured grids in [4], and [5], and [24].

In [22] and [23], the author has studied both transonic and supersonic compress-

ible Navier-Stokes flows. In [4], [5], and [24] a study of a convection-diffusion model

problem, the full potential flows and the transonic compressible Euler flows have been

performed, implicitly defined Jacobian preconditioner.

The most effective preconditioner, ILU, is difficult to parallelize efficiently. On

the other hand domain decomposition methods appear to be effective for the parallel

solution of large systems of linear or nonlinear algebraic equations resulting from the

application of finite element methods or finite difference methods to fluid dynamics

problems. The alternating method introduced by H. A. Schwarz in 1890 [19] appears

to be the earliest domain decomposition method. For two subdomains this algorithm is

intrinsically sequential. Its extension to include the case of many subdomains was done

by P. L. Lions [12]. As a consequence of this work, the additive Schwarz methods were

developed. Another method, which is a direct generalization of the original alternating

method is the multiplicative algorithm. These methods reduce the solution of the global

problem on the global domain to the solution of subproblems on local subdomains,

obtained by considering an overlapping subdivision of the global domain.



Most of the theory and applications of the Schwarz-based methods have been pri-

marily performed for elliptic and parabolic boundary value problems discretized using

finite element methods. In this paper we shall focus on their applications to the hy-

perbolic problems. We shall also study their combination with the Newton-Krylov

matrix-free methods studied in [24].

3.1 Newton's Method

Consider the following nonlinear system of equations

I(W) =0, (8)

where f is a nonlinear function from ]R 2 to IR2. Newton's method applied to (8) results

in the following iteration

• Define u0, an initial guess

• For k = 0, 1,2,... until convergence do

Solve J(Wk)6Wk = -f(Wk),

Set Wk+l = Wk + 6Wk,

(9)

(10)

• Define u0, an initial guess

• For k = 0, 1,2,-.. until convergence do

Solve J(Wk)6Wk = -f(Wk),

Set Wk+l = Wk + a6Wk,

of
where d(Wk) = _--_ (Wk) denotes the sytem Jacobian as before, and a is a parameter

selected using a line search or trust region method ([3] and [7]).

(11)

(12)

where d(Wk) = Of_-i]7(Wk) is the sytem Jacobian.

For the compressible Euler case (see section 2) this Jacobian corresponds to a

higher- order matrix-representation. Using direct-methods to solve the system (9),

the memory requirements and the computational complexity are prohibitive. In this

case iterative methods are preferred and the system (9) is solved only approximately.

The resulting method is called the inexact newton method [6], and corresponds to the

following iteration



3.2 Krylov methods

The iterative methods we will use to solve the linear system (11) which we rewrite as

J6w = -f, (13)

where f and its Jacobian J are evaluated at the current iterate, are the Krylov method.

If w0 is an initial guess for the true solution of (13), then letting w = w0 + Z, we have

the equivalent system

JZ _ rO_

where r ° = -f - Jwo is the initial residual. Let Km be the Krylov subspace

Km :-- Span{r °, Jr°, "'" , J'_-lr°} .

Arnoldi's method and GMRES both find an approximate solution

wm= w0 + Z,_, with Z,_ E K,_,

such that either

(-f - Jw,_) _L K_

for Arnoldi's method or

]If + Jw_][2 = min_e_0+g.][f + JwH2(= minzeg_[[ r° -- JZ][2)

for GMRES. Here, [[.[[2 denotes the Euclidien norm on ]R 2 and orthogonality is meant

in the usual Euclidien sense.

In these Krylov methods only the action of the Jacobian J times a vector w, and not J

explicitly is required. In the context of problem (8), this action can be approximated

by difference quotient of the form

f(u + ew)- f(u)
J(u)w _

£

where u is the current approximation to a root of (8) and e is a scalar.

Selecting an optimal parameter e in the difference formula for approximating J(u)w

might be a difficult problem. If e is too small then the rounding errors made in the

numerator are amplified by a factor of order -1 which leads to an inaccurate result.

If on the other hand e is too large then the approximation of J(u)w will be poor.

Any reasonable choice of _ should attempt to reach a compromise between these two

difficulties. The technique for choosing the scalar ¢ we use here is:

eX/2-_--_h . max{l(u, v)l, typulv]}.



where Ivl= (Ival,..., Iv l)T, and typu is a given value depending on u and the problem

to be solved. The Krylov method retained in this paper is GMRES. For more detail

we refer to [3].

3.3 Preconditioned Newton-Krylov matrix-free methods

The combination of the Krylov matrix-free methods and the inexact-Newton method

described above results in the Newton-Krylov matrix-free algorithm introduced in [3].
Although the matrix-free method is attractive because it does not form the matrix

explicitly, the matrix is still required for preconditioning purposes. In [22], [23], and

[10] the authors settled for a compromise that uses a block-diagonal preconditioner.

However, most preconditioners require the matrix explicitly. This is true for ILU pre-

conditioner. However as we mentioned earlier, the prohibitive memory requirements

and the computational complexity for the higher-order matrix representation, whether

by analytical or numerical means, makes the explicit calculation of such matrix a diffi-

cult problem. Moreover, if we decide to compute this matrix explicitly the advantage of

the matrix-free method will be lost. In order to overcome these difficulties, we proposed

in [24] to form only, the explicit Jacobian matrix corresponding to a discretization that

is similar to the defect-correction procedure described in section (2). We derived then

an ILU preconditioner based on a lower-order approximation to the true Jacobian.

This included: a) the Jacobian of a lower-order discretization, b) and the Jacobian

obtained using a discretization that allows a less expensive analytical evaluation of

elements. However, the ILU preconditioner studied there is difficult to parallelize ef-

ficiently. Therefore, we propose in this paper to use parallel preconditioners based

on Schwarz domain decomposition methods. In which case, the approximation of the

global Jacobian is reduced to the approximation of local Jacobians defined on subdo-

mains. The latter case can be combined with any of the first two cases a) and b).

This results in a mixed discretization in which the preconditioner of the consistent

higher-order system (11) is derived using an approximation of the Jacobian matrix

that employs a lower-order discretization.

Applying the method proposed above to the fully implicit nonlinear system (5) and

(7), yields the following algorithm

• Define 6W_, an initial guess.

• For k = 0, 1,2,-.- until convergence do

Solve M_II(W +e6W )- f(W ) = -M-lf(W_). (14)

Set W_+ 1 = W_ + 6W_.

9



Using right preconditioning, (14) is replaced by

Solve f(W_ + eM-'$W_)- f(W_) = -f(W_). (15)
e

The preconditioner M -1 is constructed using an approximation of a lower-order similar

to that used in the defect-correction method to derive the matrix A as described above.

3.4 Additive and Multiplicative Schwarz methods

Let I be a polygonal region in ]R 2 with boundary c0il. Let n be the total number of

interior nodes in ft. Let

Au= f (16)

be the linear system of algebraic equations resulting from the application of a finite

element, or finite difference discretization of a given set of partial differential equations.

Let {_i', i = 1, Nsd} be an overlapping decomposition of Q. Let ni (i = 1,.. -, Nsg)

denote the number of nodes in the interior of Qi _, and Ai the ni × ni matrix corre-

sponding to the discretization scheme on the mesh in ii'. Let R_ denote the ni x n

matrix corresponding to the algebraic restriction of a vector of length n defined on i to

a vector of length ni defined on li _. The transpose (pq)T corresponds to an algebraic

extension in which a vector of length n_ defined on ii' is extended to a vector of length

n defined on the whole domain _/using an extension by zero on _ \ Q_'.

Let u ° be a given initial guess, and let u k be the current iterate. The discrete form

of the Schwarz method applied to the problem (16) writes

u k+_lN,_ = u k+(i-1)lN''_ + RTA'(II_(f - Auk+(i-1)/N'd), i = 1,--', Nsd

Under the notation Pi = R_A'[1R_A, we have

(17)

u k+_ = (I- PN,,,)...(I- P1)u k +g, (18)

with appropriate g. We note that in this paper we do not use the coarse mesh operator,

and therefore it is not introduced in the definition of the Schwarz methods given here.

Let 01 = (I- PN,,_)'''(I-- P1) denote the iteration operator. If the iteration (18)

converges then its solution v verifies

(19)

The equation above defines the multiplicative algorithm for the solution of the linear

system (16).
Now we shall define the additive Schwarz method. We obtain the additive Schwarz

method by modifying the iteration (17) into the following algorithm

u k+_/_v''_ = u k+(i-1)/y''_ + R_A(XR_(f - Auk), i = 1,..., N_d (20)

10



This gives the following iteration

N,d

uk+l = uk + E RTA;1R_(f - Auk), i = 1,--. ,Nsd (21)
i=1

If the iteration (21) converges then its solution v is also solution of the following problem

Ned

___ RT A_lt_Av = g, (22)
i=l

with an appropriate g. The above equation defines the additive Schwarz precondi-

tioner for A. We notice that the multiplicative algorithm is a generalization of the

block Gauss-Seidel method with overlapping blocks, while the additive method is a

generalization of the block Jacobi method (which corresponds to zero overlap).

3.5 Application to the Steady Compressible Euler Problem

The applications of the Schwarz-based methods have been primarily applied to elliptic

and parabolic boundary value problems discretized using finite element methods or

finite difference methods. In this paper we shall focus on their applications to the

hyperbolic Euler problem using the finite volume discretization described in section

2. More precisely, the additive method (22) and the multiplicative algorithm (19) are

applied to the linear system (6) in which the matrix A corresponds to the discretization

scheme of section 2. The resulting method is a defect-correction procedure. The

numerical performance of this method is studied in the next section.

Now, instead of solving the defect-correction iteration (6), we propose to solve the

nonlinear system (5) obtained using the implicit finite volume method (see section 2)
by using the Newton-Krylov matrix-free method in which the action of the Jacobian

on a any given vector is computed using a finite difference method as described in the

subsection 3.3. We then apply the additive method and the multiplicative algorithm

to each linear step of the Newton-Krylov matrix-free iteration. The Schwarz precon-

ditioner is constructed using the matrix of a lower-order discretization obtained in a

similar fashion to that used to construct the matrix A in the defect-correction (6) of
section 2. The numerical study of this combination of the Schwarz-based methods with

the Newton-Krylov matrix-free methods are presented in the next section.

4 Numerical Results

To test the different methodologies developed here we consider a NACA0012 steady

transonic airfoil at an angle of attack of 1.25 degrees and a freestream Mach number

of 0.8. We consider two meshes, with 2048 (the coarse mesh) and 4096 (the fine mesh)

cells, respectively. In all computations performed herein the solution obtained agrees

11



with the standard one. All these calculations are performed on the same Sparcl0 ma-

chine. Since we are dealing with different methods which require varying amounts of

work at each time step we believe that CPU time is the only true measure for com-

paring them. In spite of this, we present also comparisons of the iteration counts. The
relative tolerance in the solution of the linear system is 10 -3 for the preconditioned

Krylov methods (ILU/GMRES). The steady state regime is declared when the nonlin-

ear residual norm reaches a value of (or less than) 10 -s. And in all tables presented

in this study, we show the number of nonlinear iterations (time steps) and the CPU

time necessary for the solution to reach the steady state regime. We consider also

the terminology x-decomposition, y-decomposition and xy-decomposition. The first

terminology denotes the decomposition in the x-axis direction, the second one denotes

the decomposition in the y-axis direction, and the third one denotes a decomposition

in both directions. They are respectively illustrated in part 1, part 2, and part 3 of

Table 3, for example.

The implementation of the Newton-Krylov matrix-free methods described in section

3, together with ILU/GMRES solver with explicit and implicit boundary conditions,

correspond to the code developed by the author in [24]. This code is based, in its

turn, on an EAGLE-derivative code [15] that employs the discretization described in

section 2 with explicit boundary conditions, over a body-fitted grid, and which uses

a linear solver of an approximate factorization (AF) type (see for example [2]). The

Schwarz-based domain decomposition solver uses the PETSc library that was developed

at Argonne National Laboratory [9].

Next, a comprehensive study of the combination of the Schwarz-based methods with

defect-correction procedures with explicit and implicit boundary conditions is reported.

It is then followed by a study of the combination of the Schwarz-based methods with

the Newton-Krylov matrix-free methodology.

4.1 Study of Schwarz-based methods combined with defect-

correction procedures: Coarse mesh and explicit bound-

ary conditions case

We first study the performance of Schwarz-based methods combined with the defect-

correction procedures. This study is done for both explicit and implicit boundary

conditions. We focus first, on the use of the full nested dissection method as a subdo-

main solver. The use of incomplete factorizations together with GMRES methods, in

replacement of the full nested dissection methods for the subdomain solvers, is then
considered. We note that one often uses the full nested dissection methods for the

solution of subdomain problems. Using then the preconditioned Krylov methods as

subdomain solvers, we perform several comparisons of different Schwarz-based meth-

ods on the test problem described above for various decompositions. An important

parameter related to the use of the Schwarz-based methods is the choice of the over-

12



lap. This crucial issue is also addressed here, for both the full nested dissection and

the preconditioned Krylov subdomain solvers. Another important issue is the choice

of a suitable decomposition of the global domain into local subdomains. This is also

addressed thoroughly in this study.

4.1.1 Study of the overlap

To study the choice of the overlap for the Schwarz-based methods, we first present in

Table 1 the results for different Schwarz methods with an overlap of one mesh size. To

see the effect of the overlap on the Schwarz-based methods studied here, we present in

Table 2 the results corresponding to an overlap of two mesh sizes for different Schwarz-

based methods using the iterative subdomain solvers (ILU/GMRES). We observe first

that, for a given subdomain number the number of nonlinear iterations (time steps)

varies slightly as we change the subdomain decomposition and/or the Schwarz-based

method. Moreover, we observe that the multiplicative Schwarz algorithm outperforms

the additive method for all of the various decompositions studied here. We compare

now the results performed here to those performed in 4.1.3 corresponding to an overlap

of one mesh size (Table 1). We observe that, when the subdomain number increases, the

difference between the CPU time cost of the Schwarz algorithms with two and one mesh

size overlap increases. And this is even more prohibitive for the additive algorithm.

Furthermore this difference is more important for the x-decomposition than for the

xy-decomposition.

4.1.2 The full nested dissection subdomain solvers

We shall study next the Schwarz-based methods using the full nested dissection as sub-

domain solvers. In Table 3 we present the number of nonlinear iterations (time steps)

and the CPU time at convergence (steady state regime), for the different Schwarz-based

methods and for various decompositions, employing the full nested dissection methods

as subdomain solvers. These calculations were performed with a CFL number equal

to 6.5. We observe first that, for a given subdomain solver, the number of nonlinear

iterations (Table 3), is nearly the same for all of the different Schwarz-based meth-

ods and for the various decompositions types. Comparing the block Jacobi method

with the multiplicative Schwarz algorithm (Table 3), we observe that the former out-

performs the latter for all of the decompositions cosidered here, with the exception

of the first x-decomposition. We compare now, the additive with the multiplicative

Schwarz methods. For the x-decomposition the latter outperforms the former for up to

8 subdomains, while the situation is reversed for a decomposition of 16 or more sub-

domains. In the case of the y-decomposition, the multiplicative Schwarz outperforms

the additive Schwarz for the first decomposition, and the situation is reversed for the

second decomposition. Furthermore, the latter prevails over the former for the last

two decompositions. Finally, for the xy-decompositions, the multiplicative Schwarz

13



Block Jacobi Add. Schwarz Mult. Schwarz

Decomp. Iterations CPU time Iterations CPU time Iterations CPU time

2xl

4xl

8xl

16xl

32xi

64x l

128 x 1

ix2

ix4

Ix8

Ix16

2x2

4x4

8x8

1152 4334

1151 4349

1151 4319

1149 4471

1149 5116

1154 6703

1163 10720

1152 4525

1152 4536

1154 5507

1158 8226

1151 4779

1148 4398

1151 5356

1151 4829

1150 4987

1148 4837

1147 5420

1144 6208

1145 8122

1161 11982

1160 6395

1154 6512

1154 8871

1157 12477

1158 6129

1145 6664

1143 9485

1155 4697

1157 4746

1158 4819

1160 5083

1162 5957

1163 7834

1163 10987

1158 5423

1162 6274

1163 7129

1164 10036

1158 5056

1163 5532

1163 6788

Table 1: Iteration count and CPU time (in seconds) for steady transonic flow at conver-

gence, for various preconditioner/decomposition pairs, and employing Schwarz-based

methods with explicit boundary conditions and incomplete factorizations on the coarse-

mesh case.
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Add. Schwarz Mult. Schwarz
Decomp. Iterations CPU time Iterations CPU time

2xl

4xl

8xl

16xl

32×1

64x1

128 x 1

1x2

1x4

1x8

1x16

1153 5155

1151 5074

1150 5225

1149 5639

1147 6889

1146 9704

1161 15550

1165 6743

1159 8352

1158 10744

1157 18147

1155 4900

1158 4681

1159 4786

1161 5195

1163 6152

1163 8682

1163 13467

1160 5918

1163 6695

1164 8423

1164 12524

2 × 2 1165 7093 1160 5535

4 x 4 1149 8896 1163 6169

8 x 8 1147 12002 1163 8043

Table 2: Iteration count and CPU time (in seconds) for steady transonic flow at conver-

gence, for various preconditioner/decomposition pairs, and employing Schwarz-based

methods with explicit boundary conditions and incomplete factorizations and with an

overlap of two mesh sizes on the coarse-mesh case.
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BlockJacobi Add. Schwarz Mult. Schwarz

Decomp. Iterations CPU time Iterations CPU time Iterations CPU time

2x1

4xl

8xl

16xl

32xl

64x 1

128 x 1

lx2

lx4

Ix8

Ix16

2x2

4x4

8×8

927 8150

927 7033

927 6159

926 5052

926 4969

926 5691

927 7864

927 6464

928 5385

927 5443

929 6879

927 6010

927 4746

927 4692

926 8297

926 7248

926 6483

926 6280

927 6746

926 8490

926 11555

927 7664

927 7635

926 9683

926 13289

927 7877

928 7589

926 9129

926 8060

926 7125

926 6427

926 6742

926 7129

926 8503

926 11623

926 7507

927 7813

927 9378

927 12848

926 7000

926 6937

927 8060

Table 3: Iteration count and CPU time (in seconds) for steady transonic flow at conver-

gence, for various preconditioner/decomposition pairs, and employing Schwarz-based

methods with explicit boundary conditions and full nested dissection on the coarse

mesh-case.

methods outperform the additive Schwarz methods for the four cases. It is also inter-

esting to notice that, for the x-decomposition with 16 or more subdomains the additive

method prevails over the multiplicative one, while this situation is reversed for the

xy-decompositions (4 × 4 and 8 x 8).

4.1.3 The preconditioned Krylov subdomain solvers

We shall study now, the Schwarz-based methods using the preconditioned Krylov meth-

ods as subdomain solvers. In Table 1 we present the number of nonlinear iterations

(time steps) and the CPU time at convergence (steady state regime), for the different

Schwarz-based methods and for various decompositions. These calculations were per-

formed using a CFL number equal to 5. We notice here that, this CFL is smaller than

the one used for the direct subdomain solver (CFL=6.5). For this subdomain solver,

the situation is quite smooth. More precisely, comparing the results given in Table

1, we observe that the block Jacobi method outperforms the multiplicative Schwarz

algorithm, which in its turn, prevails over the additive method. Moreover, the above

observations are valid for all of the various decompositions studied here. For a given

subdomain solver, the number of nonlinear iterations (time steps) (Table 1), is also
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nearly the same for all of the different Schwarz-based methods and for the various

decomposition types.

4.1.4 The full nested dissection versus the preconditioned Krylov subdo-

main solvers

Next, we perform comparisons of the subdomain solvers studied above, and study the

effect of replacing the full nested dissection subdomain solver by the preconditioned

Krylov subdomain solver. In Table 3, the results are obtained using the full nested

dissection methods as subdomain solvers, while in Table 1, those results are obtained

using the preconditioned Krylov methods (ILU/GMRES). We observe first that, for a

given subdomain solver the number of nonlinear iterations (time steps) (Table 3 and

1) is nearly the same for all of the different Schwarz-based methods and for the various

decomposition types. For the x-decomposition and xy-decomposition we observe (Table

3 and 1) that, using the full nested dissection as subdomain solvers is more CPU time

consuming than using the preconditioned Krylov methods (ILU/GMRES) for up to 16

subdomains. As for the y-decomposition, the preconditioned Krylov subdomain solvers

are as attractive as the full nested dissection subdomain solvers only, in the case of a

decomposition of the domain into no more than 8 subdomains.

4.1.5 Global ILU and LU solvers

In this section, we discuss the use of ILU and LU as global solvers. In Table 4, we

present the number of nonlinear iterations (time steps) and the CPU time at conver-

gence (steady state regime) for the full nested dissection (LU) and the preconditioned

Krylov methods (ILU/GMRES) used globally. We observe clearly in Table 4 that to

reach the steady state regime the full nested dissection needs more than four times

the CPU time corresponding to the preconditioned Krylov method (ILU/GMRES).

These observations are in fact not new. It is well known that the full nested dissec-

tion methods are prohibitive, both in terms of the memory requirements and the CPU

time. However, in the context of Schwarz-based methods the use of the full nested
dissection methods is reduced to a local level as subdomain solvers. This makes them

more attractive and efficient to use. (Further discussion is reported in the following

section). Nonethless, for large problems the use of the full nested dissection methods

becomes again prohibitive. And therefore, replacing the full nested dissection solver by

the preconditioned Krylov solver results in a more efficient algorithm, as shown above.

4.1.6 Comparisons of the Schwarz-based methods with the global ILU and

LU solvers

Comparing the results of Table 3 and Table 4 we clearly see that, the block Jacobi

outperforms the global full nested dissection method for all of the decompositions

17



LU ILU
Iterations CPU time Iterations CPU time

926 8516 929 2192

Table 4: Iterations counts and CPU times (in seconds) for steady transonic flow at

convergence, employing full nested dissection and incomplete factorizations on the

coarse mesh.

considered here. The other two Schwarz-based methods outperform up to 64 subdo-

mains the full nested dissection method only in the case of the x-decomposition and

the xy-decomposition and with the exception of the additive Schwarz method for the

decomposition 8 x 8. It is also very clear from Tables 1 and 4 that, the global precon-

ditioned Krylov method (ILU/GMRES) outperforms all of the different Schwarz-based

methods for all of the decompositions considered in this study. However, the Schwarz-

based methods have several advantages over the global preconditioned Krylov methods

(ILU/GMRES). The ILU preconditioner is difficult to parallelize efficiently. Moreover,

the Schwarz-based methods and more particularly, the additive Schwarz algorithm,

provide efficient and more attractive parallel algorithms. By reducing the solution of

the global problem into the solution of local subproblems the Schwarz-based methods

allow also to solve very large problems, and therefore, they are preferable to use.

4.1.7 Study of the different decomposition strategies

The above study shows that the use of the preconditioned Krylov methods as sub-

domain solvers for the different Schwarz-based methods studied in this paper is more

attractive than that of the full nested dissection methods. Therefore, we shall study

the different decomposition strategies only, for the iterative solver (Table 1). We shall

compare the three decomposition startegies for each class of Schwarz methods reported

in this paper. For the block Jacobi method it is clear that better performance in terms

of the CPU time is obtained using the x-decomposition than the y-decomposition.

Moreover, the xy-decomposition prevails over the x-decomposition for the last two de-

compositions (4 × 4 and 8 x 8), but not for the first one (2 × 2). For the additive

Schwarz method the x-decomposition prevails over the xy-decomposition which, in its

turn, prevails over the y-decomposition. The same conclusions are also true for the

multiplicative Schwarz method with the particular exception for the 64 subdomains

case where the xy-decomposition prevails over the x-decomposition.
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4.2 Study of Schwarz-based methods combined with defect-

correction procedures: Fine-mesh case and explicit bound-

ary conditions

We study now the performance of Schwarz-based methods combined with the defect-

correction procedures in the case of explicit boundary conditions, using the fine mesh

described earlier. First, the study of the choice of the overlap is performed. In Table 7

we represent the results corresponding to an overlap of two mesh size for the different

Schwarz algorithms using the iterative subdomain solver (ILU/GMRES) that we com-

pare to the results obtained using one mesh size overlap Table 6. The conclusions are

similar to the coarse mesh case. The use of the full subdomain solvers. The results are

illustrated in Table 5 where the number of nonlinear iterations (time steps) and the

CPU time at convergence (steady-state regime) for the different Schwarz-based meth-

ods and for various decompositions are presented. These calculations are performed

with a CFL number equal to 5. Similar conclusions as those obtained for the coarse

mesh are drawn. The replacement of the full subdomain solver by the preconditioned

Krylov subdomain solver (ILU/GMRES) is then performed. Table 6 illustrates the

number of nonlinear iterations (time steps) and the CPU time at convergence (steady-

state regime) for the different Schwarz-based methods and for various decompositions,

employing this iterative subdomain solver. These calculations were performed with a

CFL number equal to 4.5. Again, we obtain the same conclusions as those obtained
for the coarse mesh case.

4.2.1 Conclusions

In the above sections, we have studied several aspects of the Schwarz-based algorithms

with explicit treatment of the boundary conditions. We have shown that, the pre-

conditioned Krylov subdomain solvers result in a more efficient algorithm in terms of

the CPU time and the memory requirements as compared to the full nested subdo-

main solvers. We have also shown that, the block Jacobi method with a large number

of subdomains becomes more prohibitive in terms of the convergence rate using the

preconditioned Krylov subdomain solvers than the full nested dissection subdomain

solvers. However, using the additive and multiplicative methods the preconditioned

Krylov subdomain solvers prevail over the direct subdomain solvers. This clearly shows

that, the block Jacobi methods perform well with the direct subdomain solvers. This

has to be expected since the use of the block Jacobi method relies on giving up some

information. It shows also that for the Schwarz-based methods to be efficient with the

iterative subdomains solvers an overlap is needed. Moreover, the study of Schwarz-

based methods with different overlaps leads to the fact that, an overlap of one mesh

size corresponds to an optimal and efficient choice in terms of the convergence rate. Fi-

nally, both the x-decomposition and the xy-decomposition are found to be preferable to
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Block Jacobi Add. Schwarz Mult. Schwarz

Decomp. Iterations CPU time Iterations CPU time Iterations CPU time

2xl

4xi

8xl

16×1

32xi

64x 1

128 x 1

Ix2

1×4

Ix8

Ix16

1483 37573

1483 31215

1484 22930

1483 18445

1483 16442

1483 18410

1483 24298

1485 29566

1484 21728

1485 18574

1485 19169

1483 38048

1483 32672

1483 26475

1483 23234

1483 23643

1483 29007

1483 46536

1484 33559

1484 27205

1484 27407

1484 33095

1483 37213

1483 32169

1483 26007

1483 23351

1483 25048

1483 28858

1483 46931

1483 33294

1484 27064

1484 28104

1484 32892

2 × 2 1484 27090 1484 31576 1483 28936

4 × 4 1483 18677 1484 26393 1484 23356

8 x 8 1484 15233 1485 25755 1484 23382

Table 5: Iteration count and CPU time (in seconds) for steady transonic flow at conver-

gence, for various preconditioner/decomposition pairs, and employing Schwarz-based

methods with explicit boundary conditions and full nested dissection on the fine-mesh

case.
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Table 6: Iteration count and CPU time (in seconds) for steady transonic flow at conver-

gence, for various preconditioner/decomposition pairs, and employing Schwarz-based

methods with explicit boundary conditions and incomplete factorizations on the fine-
mesh case.
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Add. Schwarz Mult. Schwarz

Decomp. Iterations CPU time Iterations CPU time

2xl

4xl

8xl

16×1

32xi

64x 1

lx2

lx4

lx8

lx16

2x2

4x4

8x8

1602 15477

1600 15438

1605 15969

1597 16961

1596 20423

1589 29459

1617 17512

1603 19975

1601 25888

1600 33261

1618 19727

1591 21481

1588 28923

1605 14817

1613 14301

1609 15014

1612 16337

1618 18155

1620 25604

1612 16591

1617 17890

1619 20550

1620 27890

1613 15728

1616 16777

1618 19464

Table 7: Iteration count and CPU time (in seconds) for steady transonic flow at conver-

gence, for various preconditioner/decomposition pairs, and employing Schwarz-based

methods with explicit boundary conditions and incomplete factorizations with an over-

lap of two mesh sizes on the fine-mesh case.
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the y-decompositiion. However, for large number of subdomains the xy-decomposition
might be preferred.

Therefore, in the rest of this paper we will take into account the above conclusions.

More particularly, the Schwarz-based methods combined with other algorithms and/or

other treatments of the boundary conditions will be studied only, for the following
cases:

i) The subdomain solver corresponds to the preconditioned Krylov method.

ii) Only an overlap of one mesh size will be considered.

iii) And the type of decomposition retained is the xy-decomposition.

4.3 Study of Schwarz-based methods combined with defect-

correction procedures: Implicit boundary conditions case

Now, we study the performance of the combination of the different Schwarz-based

methods and the defect-correction procedures using implicit boundary conditions. This

study is performed for both the coarse-mesh and the fine-mesh cases. A comparison

with the previous study for the explicit boundary conditions is also reported.

4.3.1 Study of the performance of Schwarz-based methods

We shall compare here, the different Schwarz-based methods with an implicit treatment

of the boundary conditions. For the coarse-mesh case (Table 8), we observe clearly

that, the block Jacobi method outperforms the additive Schwarz method. Moreover,

the multiplicative Schwarz method outperforms the block Jacobi method for the last

two decompositions. For the first decomposition the latter prevails over the former.

As for the fine-mesh case (Table 9) we observe again that, the block Jacobi method

outperforms the additive method. Furthermore, the block Jacobi method prevails

also over the multiplicative Schwarz method with a close performance for the 8 x 8

decomposition.

4.3.2 Comparisons of the different Schwarz-based methods using explicit

and implicit boundary conditions

We compare now, the performance of the different Schwarz-based methods using im-

plicit and explicit boundary conditions. The author has shown in [24], that the implicit

treatment of the boundary conditions improves the convergence rate for the precon-

ditioned Krylov methods used globally as compared to the explicit one. We focus

here, on the local performance of such methods; i.e. their use as subdomains solvers.

We start first by the coarse-mesh case. For block Jacobi method the use of implicit
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Block Jacobi

Decomp. Iterations CPU time

Add. Schwarz Mult. Schwarz

Iterations CPU time Iterations CPU time

2 × 2 423 3310 405 4080

4 × 4 425 4031 430 5053

8 × 8 418 6219 422 7099

432 3459

430 3707

414 4147

Table 8: Iteration count and CPU time (in seconds) for steady transonic flow at conver-

gence, for various preconditioner/decomposition pairs, and employing Schwarz-based

methods with implicit boundary conditions and ILU/GMRES as a subdomain solver

on the coarse-mesh case. These calculations were performed with a CFL number equal

to 100.

I Block JacobiDecomp. Iterations CPU time

2 × 2 547 8911

4 × 4 540 9114

8 × 8 539 11430

Add. Schwarz

Iterations CPU time

553 11096

552 11899

546 16215

Mttlt. Schwarz

Iterations CPU time

566 9123

577 9717

574 11482

Table 9: Iteration count and CPU time (in seconds) for steady transonic flow at conver-

gence, for various preconditioner/decomposition pairs, and employing Schwarz-based

methods with implicit boundary conditions and ILU/GMRES as a subdomain solver

on the fine-mesh case. These calculations were performed with a CFL number equal

to 100.
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treatment of the boundary conditions improvesthe rate of convergenceas compared
to the explicit treatment only, in the caseof modest numbersof subdomains(Table
1 and 8). For a large number of subdomainssay8 × 8, the explicit treatment of the
boundary conditions prevailsover the implicit one. One can find an explanation of
this in the conclusionsof section4.2.1. For the overlappedSchwarz-basedmethodsthe
situation is quite different. For the additive method, the gain in terms of the CPU time
realizedusing implicit boundary conditions is more than 25%(Table 1 and 8). This is
evenbetter for the multiplicative method wherea gain of more than 32% is realized
repectively for the decompositions2 x 2, 4 × 4, and 8 × 8. The situation becomes
evenmore interesting for the fine-meshcase.First, for the block Jacobi method, the
implicit treatment of the boundary conditionsimprovesthe rate of convergencefor all
of the decompositionsconsidered.And a gain of 32%,27%,and 32%is realizedfor the
decompositions2 × 2, 4 × 4, and 8 × 8 respectively.A gain in terms of the CPU time
of respectively,38%,36%,and 24%is alsoobservedfor the additive Schwarz.For the
multiplicative method, this gain is respectively38%, 35%,and 34%. From the above
study weclearly seethat, the Schwarz-basedmethodswith overlapperform better than
the zero-overlapblock Jacobi method in the context of implicit boundary conditions
ascomparedto explicit one.

4.4 Study of Schwarz-based methods combined with the Newton-

Krylov matrix-free methods

We study here, the combination of Schwarz-based methods with the Newton-Krylov

matrix-free methods discussed in section 3. For the coarse-mesh case the starting CFL

is 60. The same starting CFL was used for all of the methods and decompositions

studied here. For the fine-mesh case the starting CFL is 30. And this CFL choice is

the same for all of the methods and decompositions studied here. We start by studying

the performance of each Schwarz-based method combined with newton-Krylov matrix-

free method. This is followed by a comparison of this combination with the previous

combination studied in the previous sections, namely the combination of the Schwarz-

based method with the defect-correction procedures.

4.4.1 Performance of Schwarz-based methods combined with Newton-Krylov
matrix-free methods

We shall focus now, on the comparison of the performance of the different Schwarz-

based methods combined with the Newton-Krylov matrix-free methodology. For the

coarse mesh case (Table 10), we observe that the block Jacobi method outperforms the

additive method only in the case of the first two decompositions. For the third decom-

position the latter prevails over the former. The multiplicative method outperforms

the additive method with a reduction of the CPU time of more than 50%. We shall
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Block Jacobi Add. Schwarz Mult. Schwarz

Decomp. Iterations CPU time Iterations CPU time Iterations CPU time

2 x 2 23 1251 26 2401 22 1132

4 x 4 26 2115 26 2572 22 1279

8 x 8 31 3301 33 2988 27 1660

Table 10: Iteration count and CPU time (in seconds) for steady transonic flow at

convergence, for various preconditioner/decomposition pairs, and employing Schwarz-

based methods combined with Newton-Krylov matrix-free methods with implicit

boundary conditions on the coarse-mesh case.

Block Jacobi

Decomp. Iterations CPU time

2x2

4x4

8×8

Add. Schwarz Mult. Schwarz

Iterations CPU time Iterations CPU time

31 5474 31 6102

32 5384 28 5708

32 6594 35 7493

33 8409

30 4759

25 4106

Table 11: Iteration count and CPU time (in seconds) for steady transonic flow at

convergence, for various preconditioner/decomposition pairs, and employing Schwarz-

based methods combined with Newton-Krylov matrix-free methods with implicit

boundary conditions on the fine-mesh case.

compare now, the performance of the above methods for the fine-mesh case. It is clear

from Table 11 that the block Jacobi method prevails over the additive-Schwarz method

for the first decomposition. For the two other decompositions the latter prevails over

the former with a gain of more than 45% for the last decomposition. We should no-

tice here as a consequence of the above discussion that, the block-Jacobi method does

not outperform the multiplicative method. This was the case for the Schwarz-based

method combined with defect-correction procedures studied in the previous sections.

4.4.2 Comparison of the Schwarz-based methods combined with Newton-

Krylov methods and with the defect-correction procedures

We start first, by comparing the results for the the coarse mesh case. The block

Jacobi method in combination with the Newton-Krylov matrix-free methods reduces

the CPU time by more than half as compared to its combination with the defect-

correction procedures (Table 8 and 10). The same conclusion is valid for the additive

Schwarz methods. Furthermore, the multiplicative Schwarz method combined with

the Newton-Krylov matrix-free has a distinct advantage over its combination with the
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defect-correctionprocedures.The CPUtime correspondingto the latter is almost three
times the one correspondingto the former. We shall focusnow on the fine-meshcase
(Table 9 and 11). The block Jacobimethod in combination with the Newton-Krylov
methodsreducesthe CPU time by 39%,41%,and 42%respectivelyascomparedto its
combinationwith the defect-correctionmethods,for the decompositions2x 2, 4 x 4, and

8 × 8. The additive algorithm combined with the Newton-Krylov methodology reduces

the CPU time by 45%, 52%, and 54% respectively for the decompositions 2 × 2, 4 × 4, and

8 x 8, as compared to its combination with the defect-correction procedures. Finally, for
the first decomposition the multiplicative Schwarz method combined with the Newton-

Krylov methodology reduces the CPU time only by 8% as compared to its combination

with the defect-correction procedures. The results are more impressive for the last two

decompositions, where the former reduces the CPU time by 51% and 64% respectively,
as compared to the latter. To illustrate the overall benefit of the combination of the

Schwarz-based algorithms with the Newton-Krylov matrix-free methods as compared

to their combination with the defect-correction procedures, using explicit and implicit

boundary conditions, we present in Figures 1-6 the curves presenting the logarithm of

the nonlinear steady-state residual versus the CPU time. These curves correspond to

the three class of Schwarz-based methods studied here (block Jacobi, additive Schwarz,

and multiplicative Schwarz) using both the coarse mesh and the fine-mesh. They

correspond also to the particular 8 × 8 subdomain decomposition.

5 Conclusions

In this paper we have proposed and studied several Schwarz-based methods. More

particularly, we have performed the following developments:

i) A full study of the Schwarz-based methods combined with the standard defect-

correction procedures with explicit boundary conditions.

ii) The effect of implicit treatment of the boundary conditions on the above combina-
tion.

iii) The study of Schwarz-based methods combined with Newton-Krylov matrix-free

methods and their comparisons with the combination studied in i).

The different issues related to the use of Schwarz-based methods such as the size

of the overlap, the choice of the decomposition, and the use of the direct and iterative

methods as subdomain solvers, were thoroughly investigated. Taking into account the

different conclusions of these investigations, we have studied the effect of replacing the

explicit treatment of the boundary conditions by an implicit one. We have shown in

particular that, an important gain in terms of the rate of convergence can be achieved

through the use of implicit boundary conditions in the context of Krylov subdomain
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solvers as compared to the use of explicit boundary conditions. The development and

the study of the combination of Schwarz-based methods with Newton-Krylov matrix-

free methods has been then performed. The performance of the preconditioned Newton-

Krylov matrix-free methods used globally has been done in [22]-[24]. We have shown

in this paper, the performance of this methods used locally; i.e. in combination with

the Schwarz-based methods.
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Figure 1: Steady-state residual versus CPU time (in seconds) for steady transonic flow

at convergence for the 8 × 8 decompositions, employing the block Jacobi algorithm

combined with defect-correction procedures with explicit (DC-explicit) and implicit

(DC-implicit) boundary conditions, and with Newton-Krylov matrix-free (NK-matrix-

free) methods on the coarse mesh.

31



-2

-3

4

-5

-6

-7

-8
0 25000

i | i ,

"DC-explicit" --
"DC-implicit"

"NK-matrix-free" - .....

',: .,'.

ij

:i

i

\

5000 10000 15000 20000

Figure 2: Steady-state residual versus CPU time (in seconds) for steady transonic flow

at convergence for the 8 × 8 decompositions, employing the additive Schwarz algorithm

combined with defect-correction procedures with explicit (DC-explicit) and implicit

(DC-implicit) boundary conditions, and with Newton-Krylov matrix-free (NK-matrix-

free) methods on the coarse mesh.
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Figure 3: Steady-state residual versus CPU time (in seconds) for steady transonic flow

at convergence for the 8 × 8 decompositions, employing the multiplicative Schwarz

algorithm combined with defect-correction procedures with explicit (DC-explicit) and

implicit (DC-implicit) boundary conditions, and with Newton-Krylov matrix-free (NK-

matrix-free) methods on the coarse mesh.
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Figure 4: Steady-state residual versus CPU time (in seconds) for steady transonic flow

at convergence for the 8 × 8 decompositions, employing the block Jacobi algorithm

combined with defect-correction procedures with explicit (DC-explicit) and implicit

(DC-implicit) boundary conditions, and with Newton-Krylov matrix-free (NK-matrix-

free) methods on the fine mesh.
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Figure 5: Steady-state residual versus CPU time (in seconds) for steady transonic flow

at convergence for the 8 × 8 decompositions, employing the additive Schwarz algorithm

combined with defect-correction procedures with explicit (DC-explicit) and implicit

(DC-implicit) boundary conditions, and with Newton-Krylov matrix-free (NK-matrix-

free) methods on the fine mesh.
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Figure 6: Steady-state residual versus CPU time (in seconds) for steady transonic flow

at convergence for the 8 x 8 decompositions, employing the multiplicative Schwarz

algorithm combined with defect-correction procedures with explicit (DC-explicit) and

implicit (DC-implicit) boundary conditions, and with Newton-Krylov matrix-free (NK-

matrix-free) methods on the fine mesh.
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